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SUMMARY

A linearized solution is obtained for the problem of plastic
deformation of a thin plate with a circular hole in the strain-
hardening range. This solution is based on the deformation- theory
of plasticity for finite strains. The two final simultaneous non-
linear differential equatiocns obtained previously are lineariged
by replacing the nonlinear terms with a simple linear term involving
a constant, which is determined by minimizing the effect due to the
linearigation. Stress and strain distributions of the problem for
a given material and a given maximum strain can be obtained through

a simple multiplication by means of the tables presented herein.
Equations for stress and strain concentration factor are also given.

Numerical examples are calculated by the linearized method.
Calculations are also made for ideally plastic materials and for a
power-law approximation. An approximate method of solution for
stress is also presented herein. The results obtained by different
methods are compared and the following conclusions were obtained:

1. The results obtained by the linearized method compare closely
with those obtained previously without 1inearizatlon.

2. The variation of a parameter determined from the octahedral.
shear stress-strain curve of the material can be used as a simple
general criterion of applicability of deformation theory for this
problem,

3. The ratios of the strains along the radius to their maximum
values and the ratio of principal stresses are essentially independent
of the octahedral shear stress-strain curve of the material, but the
stress distributions are very dependent on the mate%ial.



2 : . NACA TN 2301

4. The soluticn for ideally plastic material with the infinites-
‘imal etrain concept gives good approximate values of strains, but
not of stresses,

‘5, Bufficiently accurate values of prihcipal stresses can be
cbtained by using the straing determined by.the ideally plastic
approximation together with the actual octahedral shear shress- straln
relation of a glven.material

6. If a gimple analytical functibn.representing the octahedral
shear stress-strain relation is required for analysis, the power-law
approximation can be used. )

INTRODUCT IOH

In the design of highly stressed machine parts, knowledge of
the gtress and strain concentration due to a hole and alsoc of the
distributions of stresses and strains in the gtrain-hardening range
is desirable. The solution for a thin plate with a circular hole
for ideally plastlc material under infinitesimal strain has been
obtained by'Nadal.(reference 1, page 189). The same problem has
been sclved (reference 2) in uhe strain-hardening range by using
the deformation theory of plasticity and employing the finite-
strain concept; numerical results were obtained for two materials
in reference 2, Because of the nonlinearity of the equations,
however, the results were more or less limited to the two particular
materials used in the calculation. In order to obtain general
information applicable to most materials, it is desirable to inves- .
tigate the possibility of linearizing the equations. A linearized
solubion will also greatly reduce the amount of calculation required
for a given cass, .

Generalization of these results also has theoretical signif-
icance in the theory of plasticity in that a gensral criterion of
the applicability of the deformation theory may be cobbtained. This
theory, formulated by Hencky and Ndai (reference 3), states that
the state of stress is a unique function of the state of strain when
the directions and the ratios of the principal stresses remain constant
during loading in the absence of time and temperature effects and of
unloading. It is true for plastic deformations, which are irre—
versible processes, that the plastic strains at a certain state depend
on the path by which that state 1s reached, For a particular path,
the relations between the state of strain and stress are ynique if
the material is isotropic before loading, as is generally assumed.
Experiments on thin tubes (references 4 to 10) show that the
relations between the strain and the stress for the different
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paths, each under a constant ratio of principal stresses (also con-
gtant directions), are close, The results obtained by the deformation
theory therefore have physical significance if the previously mentioned
conditions (the directions and the ratios of principal stresses remain
constant during loading) are satisfied, No inconsistency exists in
the deformation theory if it is used for the cases where these con-
ditions are fulfilled. Even with considerable variation of the ratios
and directions of principal stresses during loading, the strains
experimentally obtained were in good agreement with the strains pre-
dicted by use of the deformation theory, as shown in references 9

(p. 199), 10 (pp. 213-15), and 11, and also in experimental work
presented by the NACA at the Third Symposium on Plasticity at

‘Brown University. Further experimental investigation is needed to
determine the extent to which the variations of directions and ratios
of principal stresses are permissible, If the variation is small,
however, the deformation theory can be expected to give good results.

The simplicity of the stregs-strain relation given by the
deformation theory minimizes the difficulties of solving concrete
problems; it is therefore of both theoretical and practical importance
to investigate the circumstances (stress-strain curves of materials,
loading conditions, boundary conditions, and geometry of the members)
under which the deformation theory applies.

SYIMBOLS

The following symbols are used in this report:

,B,C, coefficlents of nonlinear differential eguations; functions
D,E,F © of « and 7y
a inner radius of hole
b outer radius of flat ring
c | outer radius of plate, very large compared with radius a
H,J,L functions of «
h instantaneous thickness of plate

hinit initial thickness of plate

1 instantaneous léngth
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m parameter relating toistfain hardening

n parameter relating\to criterion of applicability of
deformation theory

r ‘ radial coordinate

u 4 radial displacemsnt

o parameter indicating ratio of principal stresses

¥ octahedral shear sfrain

€ logarithmic strain (or natural strain), logarithm of instan-
taneous length divided by initial length of element

8 "anguiar coordinate

*) © normal true stress; force per unit instantaneous ;réa

T octahedral shear stress

Subgcripts:

o] at inner radius of hole

b,c at radii b and c, respectively

J principal direction in general

r,0,z ‘ principal direétions in cylindrical coordinate system '

BASIC EQUATIONS

A thin infinite plate uniformly stressed in its plane in all
directions and having a circular hole is shown in figure 1. The
whole system is equivalent to a very large circular plate of
radius ¢ with a small concentric circular hole subjected radially
to the same uniform stresses - 0 on the outer boundary. The
solution obtained in such a plate within any radius b can be also
considered as a solution of a flat ring with inner radius a and
outer radius b loaded uniformly at the outer boundary with the
radial stress Op obtained in the plate solution. A small element
defined by A6 and A(r+u) taken at radius (r+u) in the deformed
state is also shown in figure 1. In the undeformed state, the same
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element would be at radius r and defined by A6 and Ar. Also
ghown in figure 1 are the instantansous thickness of the element
and the stresses acting on the element,

The stress and strain relations baged on the deformation theory
for the cage of plane plastic stress are

€g+€p +€, =0 » (1)
NE EAEEE
T__s__@rz - 0.0, + 022 ~ (2a)
1
7_2/@_(61.24-51. € + 69)2 (2v)
T = 71(7) - : | (3)
ly 1
Ce = g ,—‘.-(Ge - —é- OI') (4&)
1 1 ‘
€r =-3—%(Or —-2—09) (4:b)
. . l l ’ :
€z.=g%[‘ 3 (09 +Gr)] (4c)

where T(y) is an experimentally determined function. The con-
stants 1/2 and 1/3 in equations (4) are determined from the conditlon
defined by equation (1) and one of the equation (2). Only five

of these given equations are therefore independent. '

The finite-strain concept (references 3 and 12), which considers
the instantaneous dimensions of the element, is used because large
deformations in the straln-hardening range will be considered. The
stress is then equal to the force divided by the instantaneous ares,
and the strains are defined by the following equations:

Al
- —d
A€y = 7

e
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where ZJ is the instantaneous length of an element having the

original length of (1 )o and J 1s any principal direction. The
octahedral shear stress-strain relation, the value of octahedral
-gshear sgtrain, and the value of the principal strains are defined by
the initial and final states for the paths along which the ratiocs of
principal stresses remain constant during loading (reference 2),
thus,

(ZJ)O (lj)o

The strain given by this equation has been referred to as "logarithmic
gtrain or natural strain" (references 3 and 12). The strain-
displacement relations of the element shown in figure 1 are

€ P
(2] r F o M . (5&)
dr
€
e & . Tiu (5b)
r
ecz = h (50)
hynit '

The equations of equilibrium and compatibility after the elim-
ination of the displacements and €, (obtained in referencde 2)
are as follows:

‘ €p-€g
(:_2) ZQ; ) ‘-’r( ) d(c: ; €o) _ (O - 0p) & (6a)
, L " (Ta "
(ﬁ) ~% P (6b)

a(x
Y=

Equations (2b), (3), (4a) (4b), (6a), and (6b) are six equations
‘with six unknewns Or, Og, €r, €, T, and 7. By using the
transformations of references 1 (p. 189), 2, and 13,
O0g +9, =3NZ Tgina

0g - Op = A6 Tcos a
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or
\
0r='V'§T (/\B_sinu,-cosa)
(7)
3
Og = _T(ﬁsina+cosa)
=N J
and
, F ) h
€y = gin o ~ 3 cos qf
i 21\/3(
} (8)
€ = k& 3¢ )
6 _Z_zﬁsnu.+l\[-oscc

The parameter a is closely related to the ratio of principal
gtresses Gr/ce. From equation (7),

Or _ A3 gin o - cos o
°e I\/S sin o + cos a

This relation is plotted in figure 2 for the range of « encountered
in the present problem, It is seen that 0,04 varies almost
linearily with a, The percentage variation of o during loading
will then indicate directly the same percentage variation of °r/°’9'
When this transformation is used, the equations of the problem are
then reduced to two nonlinear differential equations with an exper-~
imentally determined relatiocn between T and 7.

A(E) do, +B(£)_9.Z..._.c
Yaf) )

d
(9)
D(i).:'(l%+m(§)£(§)=y’

where
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‘ | N
A = 'QJErcos a + 8in u) - ( 3 sin a - cos u) X co8 «

[ . B o Nz
B=(V§sina-cosa,)(1§1-1_s_f£_ﬁ)l~

Tdy N2 /7
= D - 3 )
C = 2(cos a) exp( V;y cos a.)\ ’ | }(9&)
D=W3sina-cosa)?
E=- (Algfcos a + s8in a)
_F=2V?E.-exp(-v.§7cosa)], ,
'/

From equations (9), there is obtained

D=

8

FB )
DB

CD
BD

r\ dy _FA
LG

If o 1is considered as an independent variable, the calculation
can be greatly reduced because many terms in the equations are
trigonometric functions of a; that is, '

4 loge (%) _ A% - m-j

do ~ CE - BF

. (10)
dy _FA - CD
doe CE - FB

Using equations (9a) and expanding exp (— A’ _g. ¥ cos a,) into a

series gives
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CE-BFz-ZEI.-ZIV_HJS(@?r— )fl(ow)\

AE - BD = - 12 -ng(a,,yl )
J
where |
H=cos a
Jd = nds sina - cos a
=/\I3008a+sina
and
'E
~AlZ (cos a) 7
£y (7)) = =1 [l o V2
5 (cos a)y

‘ 2!
2AT) o 24T _4f3 1
(7’Td7 T a4y 23

LINEARIZATION OF EQUATIONS

(10a)

Substituting equations (10a) into equations (10) yields the

following equations:

kil g

do 21, T 7



10 NACA TN 2301

1 -3 Ly + “FE.LHyz -

d logey _ ~_4_H_) - gNZ 16
da L J d 1 1
“r(L) 3y ( 2 3 70>70 2Nz 7t
, (11v) :
It is seen in the previous equations that T always occurs in

the combination ;‘%}‘ When a T(y) ocurve of a material is plotted

in logarithmlc scale, the slope of the curve at any value of ¥y is

d logeT _ydr
d loge? T 47

The slope % %; in the logarithmic plotting is a function of 7.

The use of the power function relating to the octahedral shear stress
and strain, which approximates the actual octahedral shear stress-
strain relation of a given material over the strain~hardening range,
will be subsequently shown to give results approximately the same asg
those obtained by using the actual octahedral shear stress-sgtrain
curve of the material., The power~function relation (or power-law

approximation) can be represented by the following equation:

T(7) = K™
or
ar .
% & =" (12)

where K and m are constants through the strain-~hardening range.
If equation (12) is used only to represent the T amd 7 relation
for the range of ¥ along the radius of the plate, accurate results
can be expected. It should be emphasized in such a case that the
value of m for one material is different for different loads.
When the wvalue of ¥ 1s decided for any calculation, the range

of 7 can Dbe estima%ed because the values 7/7p, &are quite close
for different cases (reference 2), The value of m 1s then simply
the slope of a straight line that approximates the T(y) curve of
the actual material plotted in the logarithmic scale for the

range 7p t0 ¥g. The term % %I in equations (11) can then be
¥4
replaced by m.
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A comparison of the terms in equations (1la) and (11b) with
the numerical data obtained in reference 2 shows that

@3 D (oo ) wE(FE D

and. ( 5 Ly +‘1u LH')' - . .) are small compared with

L dy

[1 + (5)2 % 5_11] 1, [1 + l\/ 51...], and 1, respectively, .
Equations (11) can therefore be linearized by replacing the term’

h’ 17 by a constant Cy, which is so determined that the effect

J 7o
(z) : |
on 31%e \a] gue to replacing A[3 1.2 by C. and neglecting
da 2J 7, 1
the terms (— %Jg_ Hy + % HZy2. ) in equation (1la), as well
as the effect on 4 loge 7 dvue to replacing A’ 312 vy Cq and
da ‘yad 7o

neglecting the terms (- Ly + .E LH7 - . .) and
~ 8N2

(‘f ;—A[g.ﬂy + 3 Hz 2., . .) in equation (11b), is very small.
Equations (ll) are then written in the following form:

E_lf;s_e_ﬁ_):(.zz»ﬁ)“() @-or) (132)

do 1+N5 % (m - Cy7,)

d logg 7 _

da L
1+ MS % (m - 0170)

(13p)

" Let

n=m-C 7 (14)
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then
d logg (é) Ny (3) +n
da 2N3E) (1 1 tn
- W3
dloge 7 (_ 4H)\ 1
da LE L +n
N3J
or . ‘
- 7
L - exp ( J g) J/__ da - (15a)
a ,
2N3 L +n oo
M % - \W3
Mo . N o
2 = exp - (43) - da g (15b)
7 ,
J% W3

In equations (15) all terms under the integral sign are functions . -
of a except n, which is a constant, The values of ' r/a and
7/7o corresponding to o for various‘values of n ocan therefore

easily be calculated by numerical integration. . The constant Cy in

equation (14) can be determined either by comparing the variations
of o amd 7/7, with r/a for different values of n calculated

from equations (15) with those obtained in reference 2, or by com-
paring the terms in equations (11). . (Because the relations of the
variables a, 7/7,, and r/a for different cases obtalned in
reference 2 are very similar, any available relations of these
variables for the problem can be used to compare the terms iIn equa-
tions (11) in determining the consbtant Cl.)__The value of. C; was

found to be 0,7 by the first method. Thus,

n=m-~ 0.7 7, (14a)



NACA TN 2301

With this method, the values of r/a and 7/ 7o corresponding

to o for a number of values of n can easily be calculated and
‘given in both curve and tabular form tc facilitate solution of this
-pro‘blem for a given material under a glven maximum strain,

DETERMINATION OF PRINCIPAL STRESSES AND STRAINS

After the variation of « anmd 7/y, with r/a is determined

by the manner previously described the principal stresges and strains
can be cbtained by equations (7) and (8) with the actual 7T(y) curve
of a given material. It is seen from the equations that €,/7,

€ol7, 0,/7, and O/t are functions of a only; they can be cal-

culated for different values of o« and given in tabular form to
facilitate solution of any given case, Equations (7) and (8) can
be written as 7 .

o,.fr = '\,%— (A\[?.'sin a - cos a) -
: - a
' TofT = Vg(ﬁ gin a + cos ‘a,)
€./ = ZV_ (ein o - A3 cos a)
o ; (8a)
€olr = (sind.+:\]_?>_cos a) S

e

The value of principal stresses and strains can be then obta.ined only
by a simple multiplication.

The method of determining the distribution of a, 7/7,, Oy,
Og, €5, and €, along r/a will be designated the linearized
solution, : ‘

STRESS AND STRAIN CONCENTRATION FACTORS AT HOLE '

The stress and strain concentration factoré are defined as the
ratio of tangential stress and strain at the hole to the tangential

13
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stress and strain at r = c¢,” respectively, with c/a much greater -
than 1. For the previously described loading condition, the values
of a at boundaries are as followss :

at r = a,
ch

Ao =

ola o

at r =c¢,
Or =09
T

From equation (7), the stress concentration factor is
' n

7
(°e)o } 70(/\/3 sin 3 4+ cos 'é) ) To

, = (162)
(9g)c TG(/\/ 3 sin.’.zt. + cos %) e
From equation (8), the strain concentration factor 1s
| 7 5
(66) 7o (sin 3 + l\/S cos ..6.) 2y
2 = —= 2 (16b)

(€p) Y
§7c 7o (sin%-e- 3005%) °

 The stress and strain concentration factors were experimentally
determined in reference 14 for a tension panel with a circular hole,
An approximate equation of stress concentration factor for the same
problem was given in reference 15.

IDEALLY PIASTIC AND APPROXIMATE SOLUTION

When n = 0, equations (15) become
a , ‘
r N3 1
= = ex 22 da -~ =4 (logg cos a
s~ P [z -5 4 (toge il
o
a
2 = exp - 4da
75 a0 A3 + tan q
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(5 - ste ) )
7 d??'cos oy + sin gg Ar—xdb - a) (17D)

4 cos a + sin a

For ideally plastic material when the infinitesimel strain concept
is employed, =0 and 70 is infinitesimal; n 1is then equal to

zerc, this belng the special case of n = 0. For this case, the

same relatlcn between r/a and « as in equation (17a) waé obtained
by Nédai (reference 1).

The variation of a and 7/7o with r/a for a material with

n £ 0 can be determined approximately by equatioms (17). This approx-
imaticn, however, ig used only to determine gtrains €, and €g
because the strains are functions of o and 7 only. The stresses,
which are functions of o and T, can be determined by the approx-
imate values of o and 7/7 with the actual T(y) curve of the

material., This method will be designated the approximate solution,

CALCULATIONS, RESULTS, AND DISCUSSION

" In order to cbserve the degree of approximation resulting from
the use of a power function representing the cctahedral shear stress-
strain relation over the whole strain-hardening range, a calculation
is made with the following relation between T and 7:

. 1(2) = 126,000 y°°2°

The constants 126,000 and 0.25 are chosen in order to approximate
the 7T(y) curve of Inconel X over the whole strain-hardening range
(fig. 3). The variations of a, 7,04, 0p, €p, and €4 with r/a
for y = 0,3 obtalned by the power-law approximation are compared

with the values obtained from the actual 7(y) curve of Inconel X
in figure 4. These curves are seen to agree well, This result

indicates that the method used to linearize % %I in equations (11)
. Y
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ghould introduce very little error. Also, if a simple analytical
function of T(y) is desired in the analysis this simple form
7(y) = Ky® representing the T and ¥ relation of a given material
will glve a very good approximstion,

The values of r/a and 7/70 corresponding to. o are cal-.
culated for n = -0.15, -0.1, O, 0.1, 0.2, 0.3, and 0.4 from the
linearized equations (15) Phe varlations of o« amd 7/7, with
r/a for different values of n are plotted in figure 5 and are
tabulated in table I. The curves of o and 7/7, against r/a

obtained in reference 2 for Inconel X and 16-25-6 are plotted in
figure 6; the values of n for these cases are calculated from
equation (14a) and are also indicated on these curves. The curves
obtained from the linearized solution (fig. 5) which have values
of n close to the values of n of the curves obtained from ref-
erence 2, are also plotted on figure 6 for comparison. It can be
geen that the results for the same n of the two solutionsg agree
very well for most cases. For simplicity, the solutions obtained
in reference 2 based on the deformation theory are designated the.
exact solution. The simple relation n =m - 0.7 7, can then be
used as a good approximate criterion to find the distributions of
o and 7/7o with r/a for different materials and different max-

imum strains. Thils generslity has a very important consequence,
because it leads to a general criterion of applicability of the
deformation theory of plasticity for any material in the straine
hardening range for this problem., The criterion now is that if the
value of n for a given material is constant or approximately _
constant in the strain-hardening range, the deformation theory can
be applied to the protlem for this materiael. For the special case
of infinitesimal strain, the condition that n 1is constant reduces
to the condition that m is constant, which is the same condition
obtained by Ilyushin (reference 16).

The maximum variation of « at any r/a is less than 10 per-
cent for a variation of n from -0.15 to 0.4 (fig. 5(a)). Because
for most materials m increases with 7, 1t can be seen from equa-~
tion (14a2) that m and 7o affect n 1in an opposite manner 80
that the variation of n with strain is small., The value of n
for most materials and for any strain varies from -0.1 to 0.25
(references 17 to 19); only a small part of this variation is due
to variation with strain for a given material, The variations of «
during loading will then be expected to be very small for fost
materialsg consequently, the deformation thecry of plasticity is
applicable within engineering accuracy to this problem,
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It is also interesting to note the variations of 7/75 with
r/a for different values of n. From figure 5(b) the curves of
7/70 against r/a near the hole, which is the region of interest,

are close for values of n from -0.15 to 0.4.

The values of o y/T,0g/7, €r/7, and ¢y/y were calculated
by equations (7a) and (8a) for the range of o considered
(table II). The distributions of principal stresses and strains
were obtained by the linearized solution for the following cases:
7o = 0.1871, Inconel X; y, = 0.3000, Inconel X; and Yo = 0.4600,
16-25-8, The results are plotted in figure 7 with results obtained
in reference 2 for comparison. The examples 7yg = 0.3000, Inconel X,
and 7o = 0.4600, 16-25-6 are. chosen because they show the greatest
deviation in a and .y/y, between the linearized and the exact
solutions. The example of 7y, = 0.1871, Inconel X 1s chosen because
it has an average agreement between the two solutions., The' value

of n for this case 1s equal to 0.151; o and /70 at cor-
responding values of r/a can be obtained from table I by linear ‘

interpolation, The distributions of principal stresses and strains
obtained by the linearized solution agree very well with those
obtained by the exact solution even for the case cf 7, = 0.4600,

16-25-6, for which the agreement in 7/7o between the two solutions
(fig. 65 is least. ’

Calculations were algso made for the case of ideally plasgtic
material (T =.constant) with the infinitesimal strain concept.
The variations of o and 7/7O with r/a are the same as for the

case of n =0 (fig. 5). The distributions of principal strains

were calculated for 7, equal to 0.1871 and 0.4600 (fig. 8). The
curves obtained by the exact solution for 7y, = 0.1871, Inconel X,
and 7, = 0.4600, 16-25-6 are also plotted in this figure. These

two cases are chosen because the o and 7/70 curves deviate mogt
from the curves of n = 0 (fig. 5). From the curves of « and 1/v,

against r/a of n = 0 and the actual T(y) curve of Inconel X and
16-25-6, the distributions of principal stresses are calculated for
the cases of y, = 0.1871 and 714 = 0.4600, respectively; this
procedure gives the approximate solution.

The principal stresses are‘also calculated for the ideally
plagtic materials, In this case T = constant and is chosen equal
to the value of T, for which the solutions are being compared.

These distributicns of principal stress along the radius, as well
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as those obtained by linearized and exact solutions are plotted for
comparison in figures 9(a&) and 9(b) for 7, = 0.4600, 16-25-6, and
for 7o = 0.1871, Inconel X, respectively. It can be seen from
figure 8 that the principal strains obtained by the ideally plastic
material with the Infinitesimal strain concept (which is the same
cage ag the approximate solution) gives good approximate results.,
Ag shown in figure 9, however, the principal stresses, especlally
the tangential stress (the most important part of the solutlon)
obtained by the ideally plastic material ars not good enough to
approximate the actual results no matter which value of T is
used, With glight modification as described in the approximate
solution (using o amd 7/7, for n =0 and the actual T (y)
relation of the material), the principal stresses, especially the
tangential stress, obtained agree much better with the exact
gsolution, This simple approximate method can therefore give good
results, It also indicates that the ratio of the strains along

the radius to the maximum value and the ratio of principal stresses
are esgentially independent of the T (y) curve of the material and
the maximum strain of the plste, but the stresses are very much
dependent on the T(y7) curve of the material, This result not only
further confirms the conclusions obtained in reference 2, but also
generalizes those results to most materials (that is, not limited by
the T(y) curves of Inconel X and 16-25-6 previously investigated),

A1l the results and discussions are true only for this problem
under plastic deformation in the strain-hardening range in which the
elagtic strains are small compared with the plastic strains, and
neither time and temperature effects nor unloading are present,

CONCLUSIONS

The results obtained for a thin plate with circular hole in the
strain-hardening range, in which the elastic strain is small compared
with the plastic strain, show that:

1. The results obtained by the linearigzed solution agree very
well with those obtained by the exact solution based on the deformation
theory of plasticity. The amount of computation required 1s very
much reduced by the linearization., With the tables cor curves pre-
sented herein, the distributions of octahedral shear stress and strain
as well as the principal stresses and strains can be ‘obtained for
a given material under a given maximum strain of the plate by a simple
multiplication, ‘
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2. The variation of é parameter determined from the octahedral shear

stress-strain curve of the material can be used as a simple general
criterion of applicability of deformation theory for this problem.

3. The results previously obtained for Inconel X and 16-25-6
were extended to most materials: namely, the ratios of the straing
along the radius to the maximum value and the ratioc of principal
stregsses are egsentially independent of the octahedral shear stress-
strain curve of the material, but the stress distributions are very
devendent on the material,

4, The results obtained for the 1ldeally plastic material with
the infinitesimal strain concept give good approximate values of
principal strains, but not of principal stresses.

5, Sufficiently accurate values of principal stregses can be
obtained by the approximate method cf using the strains obtained by
the ideally plastic material, together with the actual octahedral
shear stress-sirain relatlon of the material,

6. If a gimple analytical function representing the octahedral
shear stress-strain relation is required for analysls, the power-law
approximation can be used.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, September 20, 1950.
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TABLE IT - VALUES OF ¢ /7, €g/7,04/T, AND Op/T

FOR VARIOUS VALUES OF o

a €r/7 E:e/y Or/T Oe/'\’
0.5236 -0.3536 0,7071 0 2.1214
L5934 | - .3100 . 7054 ,1710 | 2,2018
.6632 - .2649 . 7002 3411 | 2,2713
.7505 | - 20867 .6890 5511 | 2.3424|
.8378 | - .1470 .6725 L7571 | 2.3961
.9250 | - ,0862 8509 L9571 | 2.4312
1.0123 - 0247 .8243 | 1,1502 | 2,4481
1.0821 .0246 .5997 | 1.2980 | 2.4480
1.1519 .0739 L5721 | 1.4397 | 2.4361
1.2130 1167 .5456 | 1.5582 | 2.4160
1.2741 - L,1580 .5172 1.6705 | 2.3868
1.3285 1949 .4912 1.7622 | 2.3547
1.3788 .2302 L4839 | 1.8486 | 2.3160
1.4137 2534 4451 | 1.9036 | 2.2870
1.4486 .2763 4255 | 1,9562 | 2.,2547
1.4661 .2876 4158 1.9818 2.2377
1.4835 .2988 .4056 | 2,0065 | 2.2201
1.4923 .3044 ,4005 | 2,0186 | 2,2109
1.5010 .3100 .3954 | 2,0309 | 2.2017
1.5097 3155 .3903 | 2,0426 | 2,1920
1.5184 3210 .3851 | 2,0543 | 2,1825
1.5272 .3285 3799 | 2.,0859 | 2,1727
1.5359 «3320 .3747 | 2,0774 | 2,1629
1.5446 .3374 .3695 | 2,0887 | 2.1528
1,5533 .3428 3642 | 2,0996 | 2.1424
1.5621 .3482 .3589 | 2,1107 | 2.1320
1.5708 .3536 .3536 |2,1214 | 2.1214
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Pigure 1. - Thin infinite plate with circular hole, flat
ring, and its element in deformed state.
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Principal stresses, oy and Op, Ib/sa in.

NACA TN 2301

A
210 X403
p
200 R\ . 4]
190
\S
\\
\
i80 po \\
¢ 3
170
aaN
160 < -
L Haximum ~ Material
N pctahedral
N . ) e e, oy SUNNN N shear
>N T T—F—F—=3=—— strain
150 \\ . Yo
"y 0.3000 Inconel
I~ L —
140 *\ \‘\\ s
= =l {
]
130 - ,/
7 L4600 16-25-6
/2
i20 fA O e M
- 1
/ -
/ | =3
ps
10 // W
/ pd
/
/ A7
00 7
! / .
{. vl
4
I
80

—

—]

80 /

P
]

70

Pt~ —]

-l

e ]

| i

Linearized solution
e —= Exact solution

Ji
!
30 |
i
i
T
1
20 +
|
I
0 r Y T

Figure 7, - Concluded.

Proportionate radial distance, r/a

(b} Variation of principal stresses with proportionate radial distance.

Comparison of principal stresses and straifis obtained by finearized solution and exact 'solution.



NACA TN 2301

Principal strains, €g and &

39

.36
.32
.28 ‘
“\ — = fxact solution ¢
\\ —————Approximate solution
A — —— ideally plastic:
.24 b
|
I\
[ \
.20 \
i1
\
A
A\
\\
.16 N
. ;
AN
A2 AN
N,
\\\\
N\ > Maximum
~Tad
~ o icctahedral Materiat
.08 By shear
Ny i mat ¥ SR R strain
N A .
P —1— =1 0.4600 {6-28-€
.04 .
L1871 Incone!l Xi
¢
7
v /.
V4 //
04 /4 ]
/ //
i /
it
!
.08 7
€r /
{
III
12 J
/
i
.16
NACA
.20 [ |
i 2

3 4 5 <] 7 8 9
Proportionate radiai distance, r/a

10

Figure 8, - Comparison of distributions of principal strains along proportionate radial distance obtamed by approxi-

mate solution and ideally plastic with exact solution.



40

Principal stresses, LA and oy, 1b/sa in.
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